Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Pest Manag Sci ; 80(2): 687-697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37758685

RESUMO

BACKGROUND: Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS: In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION: Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.


Assuntos
Ligases , Pectobacterium carotovorum , Pectobacterium , Animais , Virulência/genética , Pectobacterium carotovorum/genética , Drosophila melanogaster , Pectobacterium/genética , Doenças das Plantas/microbiologia
2.
Environ Sci Technol ; 57(47): 18391-18392, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014486
3.
Water Res ; 245: 120627, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717334

RESUMO

This study aimed to implement an extensive prediction model for the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs). Five WWTPs equipped with seven different biological treatment processes were monitored from 2020 to 2022 with three to four sampling events in each year, and 27 datasets for 20 MPs were collected. Among these datasets, 12 were used to investigate the behavior and fate of MPs in WWTPs in South Korea. Metformin, acetaminophen, caffeine, naproxen, and ibuprofen were the MPs with the highest influent concentrations (ranging from 3,933.3-187,637.0 ng L-1) at all WWTPs. More than 90% of MPs were removed by biological treatment processes in all WWTPs. The Kruskal-Wallis test verified that their efficacy did not differ statistically (p-value > 0.05). Meanwhile, to refine the performance of the prediction model, this study optimized the biodegradation rate constants (kbio) of each MP according to the variation of seasonal water temperature. As a result, compared to the original prediction model, the mean difference between the actual data and predicted results (MEAN) decreased by 6.77%, while the Nash-Sutcliffe efficiency (NSE) increased by 0.226. The final MEAN and NSE for the refined prediction model were calculated to be 5.09% and 0.964, respectively. The prediction model made accurate predictions, even for MPs exhibiting behaviors different from other cases, such as estriol and atrazine. Consequently, the optimization strategy proposed in this study was determined to be effective because the overall removal efficiencies of MPs were successfully predicted even with limited reference datasets.

4.
Chemosphere ; 338: 139450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451645

RESUMO

The composition of the wastewater matrix influences the oxidation potential of ozonation, a technique widely recognized efficient removal of micropollutants. Here, we developed a chemical kinetic model to determine the ozone dose required to minimize bromate production in wastewater containing bromine ions while achieving target removal rates. In wastewater ozonation, ozone decomposition comprises instantaneous ozone consumption and subsequent decomposition at first-order reaction rates. Under the injection condition of 1.5 g O3/g dissolved organic carbon (DOC), the instantaneous ozone demand was 62.7% of the injection concentration, and it increased proportionally with increasing injected ozone concentration. Ozone and hydroxyl radical exposures were proportional to the initial ozone dose, while hydroxyl radical exposure was proportional to ozone exposure, and the deviation was relatively high at 1.0-1.5 g O3/g DOC. The calculated hydroxyl radical exposure was 3.0 × 10-10 to 5.3 × 10-10 M s. Ozone and hydroxyl radicals are highly correlated with the ratio of ozone dose to organic matter concentration. Therefore, a trace substance removal rate evaluation model combined with the ROH, O3 model and a bromate generation model were also considered. For ibuprofen, the ozone dose for achieving the target removal rate of 80% while maintaining the bromate concentration below 50 µg L-1 was suitable in the operating range of 0.86 g O3/g DOC or more. The proposed method provides a practical operation strategy to calculate the appropriate ozone dose condition from the target compound removal rate prediction and bromate generation models considering the ratio of ozone dose to organic matter concentration in the incoming wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Brometos , Bromatos/química , Radical Hidroxila/química , Poluentes Químicos da Água/química , Ozônio/química , Oxirredução , Purificação da Água/métodos
5.
Angew Chem Int Ed Engl ; 62(39): e202305196, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37309575

RESUMO

We introduce a novel cyclic ß-amino acid, trans-(3S,4R)-4-aminotetrahydrothiophene-3-carboxylic acid (ATTC), as a versatile building block for designing peptide foldamers with controlled secondary structures. We synthesized and characterized a series of ß-peptide hexamers containing ATTC using various techniques, including X-ray crystallography, circular dichroism, and NMR spectroscopy. Our findings reveal that ATTC-containing foldamers can adopt 12-helical conformations similar to their isosteres and offer the possibility of fine-tuning their properties via post-synthetic modifications. In particular, chemoselective conjugation strategies demonstrate that ATTC provides unique post-synthetic modification opportunities, which expand their potential applications across diverse research areas. Collectively, our study highlights the versatility and utility of ATTC as an alternative to previously reported cyclic ß-amino acid building blocks in both structural and functional aspects, paving the way for future research in the realm of peptide foldamers and beyond.


Assuntos
Peptídeos , Sulfetos , Peptídeos/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Cristalografia por Raios X
6.
J Hazard Mater ; 454: 131436, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146328

RESUMO

Ozonation, a viable option for improving wastewater effluent quality, requires process optimization to ensure the organic micropollutants (OMPs) elimination and disinfection under minimized byproduct formation. This study assessed and compared the efficiencies of ozonation (O3) and ozone with hydrogen peroxide (O3/H2O2) for 70 OMPs elimination, inactivation of three bacteria and three viruses, and formation of bromate and biodegradable organics during the bench-scale O3 and O3/H2O2 treatment of municipal wastewater effluent. 39 OMPs were fully eliminated, and 22 OMPs were considerably eliminated (54 ± 14%) at an ozone dosage of 0.5 gO3/gDOC for their high reactivity to ozone or •OH. The chemical kinetics approach accurately predicted the OMP elimination levels based on the rate constants and exposures of ozone and •OH, where the quantum chemical calculation and group contribution method successfully predicted the ozone and •OH rate constants, respectively. Microbial inactivation levels increased with increasing ozone dosage up to ∼3.1 (bacteria) and ∼2.6 (virus) log10 reductions at 0.7 gO3/gDOC. O3/H2O2 minimized bromate formation but significantly decreased bacteria/virus inactivation, whereas its impact on OMP elimination was insignificant. Ozonation produced biodegradable organics that were removed by a post-biodegradation treatment, achieving up to 24% DOM mineralization. These results can be useful for optimizing O3 and O3/H2O2 processes for enhanced wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio , Bromatos , Desinfecção , Poluentes Químicos da Água/análise , Oxirredução , Purificação da Água/métodos , Bactérias
7.
Inorg Chem ; 62(22): 8589-8597, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37219357

RESUMO

The synthesis and characterization of a series of nickel complexes bearing a bismuth-containing pincer ligand are presented herein. In particular, synthesis of a 4-coordinate Bi-Ni(II) complex allows the influence of bismuth on a d8 Ni(II) ion to be investigated. A trigonal-bipyramidal complex, (BiP2)Ni(PPh) (1), possessing an anionic bismuth donor was prepared via the Bi-C bond cleavage of a BiP3 ligand (BiP3 = Bi(o-PiPr2-C6H4)3) mediated by Ni(0). To remove a PPh moiety, compound 1 was treated with MeI to give a 5-coordinate nickel(II) complex (MeBiP2)Ni(PPh)(I) (2), followed by its exposure to heat or UV irradiation, resulting in the formation of a nickel halide complex, (BiP2)Ni(I) (3). The X-ray crystal structure of 2 revealed that the methyl moiety binds to a bismuth site, providing a neutral MeBiP2 ligand, while the iodide anion is bound to the nickel(II) center, displacing one phosphine donor. Because of the methylation on a Bi site, the Bi-Ni bond in 2 is clearly elongated relative to that of 1, which indicates that the bonding interactions between Bi and Ni are substantially different. Interestingly, compound 3 revealing a sawhorse geometry is significantly distorted away from a square-planar structure compared to the previously reported nickel(II) pincer complexes, (NP2)Ni(Cl) and (PP2)Ni(I). Such difference indicates that a bismuth donor can be a structurally influencing cooperative site for a nickel(II) ion, leading to have a Ni(I)-Bi(II) character. Migratory insertion of CO into a Ni-C bond of 1 gives (BiP2)Ni(COPPh) (4), which further leads to an analogous methylated product (MeBiP2)Ni(COPPh)(I) (5) from reaction with MeI. Due to the structural influence of a carbonyl group in each step, the total reaction time from 1 to 3 was dramatically reduced. The bimetallic cooperativity of the complexes and unusual bonding properties presented here highlight the potential of a bismuth-nickel moiety as a new type of heterobimetallic site for the design of bimetallic complexes to facilitate a variety of chemical transformations.

8.
Inorg Chem ; 62(7): 3007-3017, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36753609

RESUMO

A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS‡ < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), P•-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or P•-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.

9.
Plant Pathol J ; 39(1): 62-74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760050

RESUMO

Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine ß-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.

10.
Sci Total Environ ; 858(Pt 1): 159724, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306847

RESUMO

Effluents of wastewater treatment plants (WWTPs) contain various organic micropollutants, some of which can exert negative effects on the quality of receiving waters or drinking water sources. This study monitored two full-scale WWTPs in Korea for the occurrence and removal of bioactive chemicals for a one-year period using a battery of in vitro bioassays as a complementary approach to chemical analysis. Bioassays covering different endpoints were employed, such as hormone receptor activation (AR and ERα), xenobiotic metabolism (PAH and PXR), oxidative stress response (Nrf2), and cytotoxicity. The WWTP influents showed AR, ERα, and PAH activities at ng/L - µg/L and PXR and Nrf2 activities at µg/L - mg/L as bioanalytical equivalent concentrations of a reference compound for each bioassay. These bioactivities decreased along with the WWTP treatment train, with significant removals achieved by the secondary biological treatment processes. Cytotoxicity was observed only for some municipal wastewater (M-WWTP) influents but was below the limit of quantification for most cases. The influent and effluent bioactivities observed in this study were mostly comparable to those reported in other WWTPs in the literature. Comparison of the bioactivities with the effect-based trigger (EBT) values indicates that the impact of WWTP effluents on receiving water quality was low for most endpoints. For Nrf2, however, further investigation is required to evaluate the observed high bioactivities compared with the current EBT. The observed ERα activity could partly be explained by the presence of some steroid estrogens. Overall, our results contribute to an important database for the concentrations and removal efficiencies of bioactive chemicals in WWTPs and demonstrate bioassays as a useful tool for urban water quality monitoring.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Receptor alfa de Estrogênio , Fator 2 Relacionado a NF-E2 , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Águas Residuárias/análise
11.
Environ Sci Technol ; 57(47): 18509-18518, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441566

RESUMO

Ferrate (Fe(VI)) is a novel oxidant that can be used to mitigate disinfection byproduct (DBP) precursors. However, the reaction of Fe(VI) with organic nitrogen, which is a potential precursor of potent nitrogenous DBPs, remains largely unexplored. The present work aimed to identify the kinetics and products for the reaction of Fe(VI) with primary amines, notably amino acids. A new kinetic model involving ionizable intermediates was proposed and can describe the unusual pH effect on the Fe(VI) reactivity toward primary amines and amino acids. The Fe(VI) oxidation of phenylalanine produced a mixture of nitrile, nitrite/nitrate, amide, and ammonia, while nitroalkane was an additional product in the case of glycine. The product distribution for amino acids significantly differed from that of uncarboxylated primary amines that mainly generate nitriles. A general reaction pathway for primary amines and amino acids was proposed and notably involved the formation of imines, the degradation of which was affected by the presence of a carboxylic group. In comparison, ozonation led to higher yields of nitroalkanes that could be readily converted to potent halonitroalkanes during chlor(am)ination. Based on this study, Fe(VI) can effectively mitigate primary amine-based, nitrogenous DBP precursors with little formation of toxic halonitroalkanes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminas , Aminoácidos , Oxirredução , Oxidantes/química , Nitrogênio , Cinética , Poluentes Químicos da Água/análise
12.
Photochem Photobiol Sci ; 22(3): 655-667, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481980

RESUMO

Cationic amphipathic structures are often utilized in natural membrane-active host-defense peptides. Negatively charged surface membranes of rapidly proliferating bacterial and cancer cells have been targeted by various synthetic peptides and peptidomimetics adopting the structural motif. Herein, we synthesized a set of conjugates composed of cationic amphipathic peptoids (i.e., oligo-N-substituted glycines) and a chlorin photosensitizer, named chlorin e6 (Ce6)-peptoid conjugates (CPCs). Among the nine CPCs, CPC 7, composed of Ce6, a PEG linker, and guanidine-rich helical amphipathic peptoids, exhibited a distinct photoresponsive inactivation of Gram-positive and Gram-negative bacteria. Subsequent studies showed that CPC 7 effectively killed various cancer cells after irradiation with red light (655 nm), suggesting the potential of CPC 7 as a dual antimicrobial and anticancer agent. Confocal laser scanning microscopy and flow cytometry data suggested that CPC 7 could induce apoptotic cell death. Our results show the potential of peptoid-based photosensitizer conjugates as a versatile platform for antimicrobial and anticancer photodynamic therapy agents and peptoid therapeutics.


Assuntos
Anti-Infecciosos , Antineoplásicos , Clorofilídeos , Peptoides , Fotoquimioterapia , Porfirinas , Peptoides/farmacologia , Peptoides/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fotoquimioterapia/métodos , Peptídeos/química , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Porfirinas/farmacologia , Porfirinas/química
13.
J Environ Manage ; 328: 116900, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512948

RESUMO

Electronic waste (e-waste) is the world's fastest-growing type of waste, with lighting accounting for 9% of the total. Light-emitting diodes (LEDs) are composed of the most concentrated critical elements (Ag and Au) and recovery of these metals could generate economic benefits and reduce the burdens of environmental pollution; nevertheless, the absence of information about their composition currently presents a challenge in recycling these metals with minimal prospects for recovery. This study assessed the distribution and variation of elemental concentrations of 16 different elements in three generations of LEDs (12 different LED units): sub-mounted-device (SMD #10), chip-on-board (COB #1), and positive-intrinsic-negative (PIN #1). The SMD LEDs contained a considerable amount of Au with a median average concentration of 1204 mg/kg (ranging from 323 - 3687 mg/kg), which was similar to that of COB (1550 mg/kg), but higher than that of PIN LED (175 mg/kg). Based on the total threshold limiting concentration (TTLC), the Cu levels (605,823 mg/kg) in the SMD package exceeded the regulatory limits (2500 mg/kg). Concentrations of the hazardous elements Cr (29 mg/kg), Pb (12 mg/kg), Cd (0.1 mg/kg), and As (1 mg/kg) in the LED packages were within the regulatory limits. To recycle precious metals and other technological metals, a well-organized and dedicated optimized assessment of the value of metals is required especially in accordance with the concept of criticality and recyclability. Two factors, i.e., a high resource index (RI) and technology index (TI), suggest the importance of waste to the economy and has a significant potential for recycling with less processing burdens. Present findings indicated that the COB and a few of the studied SMD LEDs (3020, 4014, 5630, and 7020), exhibit high criticality and recyclability. For the RI and TI index, the contribution of metals such as Cu, Fe, Al, and Au were dominant. These findings can serve as a reference for the development of a viable approach for the recycling and recovery of targeted metals from LED e-waste.


Assuntos
Resíduo Eletrônico , Metais , Reciclagem , Resíduo Eletrônico/análise
14.
Materials (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38204031

RESUMO

This study investigates the corrosion resistance of Type 316 stainless steel as a candidate material for radioactive waste disposal canisters. The viability of stainless steel is examined under groundwater conditions with variations in pH, bisulfide ions (HS-), and chloride ions (Cl-) concentrations. Utilizing response surface methodology, correlations between corrosion factors and two crucial response variables, passive film breakdown potential and protection potential, are established. Cyclic potentiodynamic polarization tests and advanced analytical techniques provide detailed insights into the material's behavior. This research goes beyond, deriving an equation through response surface methodology that elucidates the relationship between the factors and breakdown potential. HS- weakens the passive film and reduces the pitting corrosion resistance of the stainless steel. However, this study highlights the inhibitory effect of HS- on pitting corrosion when Cl- concentrations are below 0.001 M and at equivalent concentrations of HS-. Under these conditions, immediate re-passivation occurs from the destroyed passive film to metal sulfides such as FeS2, MoS2, and MoS3. As a result, no hysteresis loop occurs in the cyclic polarization curve in these conditions. This research contributes to the understanding of Type 316 stainless-steel corrosion behavior, offering implications for the disposal of radioactive waste in geological repositories.

15.
Microbiol Spectr ; 10(6): e0231222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321913

RESUMO

Previously, it was reported that natural phenazines are able to support the anaerobic survival of Pseudomonas aeruginosa PA14 cells via electron shuttling, with electrodes poised as the terminal oxidants (Y. Wang, S. E. Kern, and D. K. Newman, J Bacteriol 192:365-369, 2010, https://doi.org/10.1128/JB.01188-09). The present study shows that both pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) promoted the anaerobic killing of PA14 Δphz cells presumably via a single-electron transfer reaction with ferrous iron. However, phenazine-1-carboxylic acid (PCA) did not affect anaerobic survival in the presence of ferrous iron. Anaerobic cell death was alleviated by the addition of antioxidant compounds, which inhibit electron transfer via DNA damage. Neither superoxide dismutase (SOD) nor catalase was able to alleviate P. aeruginosa cell death, ruling out the possibility of reactive oxygen species (ROS)-induced killing. Further, the phenazine degradation profile and the redox state-associated color changes suggested that phenazine radical intermediates are likely generated by single-electron transfer. In this study, we showed that the phenazines 1-OHPHZ and PYO anaerobically killed the cell via single-electron transfer with ferrous iron and that the killing might have resulted from phenazine radicals. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen which infects patients with burns, immunocompromised individuals, and in particular, the mucus that accumulates on the surface of the lung in cystic fibrosis (CF) patients. Phenazines as redox-active small molecules have been reported as important compounds for the control of cellular functions and virulence as well as anaerobic survival via electron shuttles. We show that both pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) generate phenazine radical intermediates via presumably single-electron transfer reaction with ferrous iron, leading to the anaerobic killing of Pseudomonas cells. The recA mutant defect in the DNA repair system was more sensitive to anaerobic conditions. Our results collectively suggest that both phenazines anaerobically kill cells via DNA damage during electron transfer with iron.


Assuntos
Pseudomonas aeruginosa , Piocianina , Humanos , Piocianina/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Anaerobiose , Elétrons , Fenazinas/farmacologia , Fenazinas/metabolismo
16.
Org Lett ; 24(48): 8812-8815, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417689

RESUMO

o-Arene-connected porphyrinoids were synthesized with o-(2-thienyl)vinylarene motif as a new building block for porphyrinoids. This motif can replace meso-aryl-substituted dipyrromethene and serve as a command key arranging o-connectivity of porphyrinoid. While 6a (benzene version) is very weak, 6b (pyridine version) shows a substantial amount of diatropic ring current due to reduced steric hindrance (without H23) and rigidified Pd-6a became more aromatic than 6b.

17.
Environ Sci Technol ; 56(21): 15141-15155, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098629

RESUMO

This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.


Assuntos
Cloro , Purificação da Água , Águas Residuárias/microbiologia , Desinfecção , Raios Ultravioleta , RNA Ribossômico 16S , Nucleotídeos , Amônia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Escherichia coli , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia
18.
Microbiol Spectr ; 10(4): e0181422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35771009

RESUMO

Various interactions between marine cyanobacteria and heterotrophic bacteria have been known, but the symbiotic relationships between Microcystis and heterotrophic bacteria remain unclear. An axenic M. aeruginosa culture (NIES-298) was quickly bleached after exponential growth, whereas a xenic M. aeruginosa culture (KW) showed a normal growth curve, suggesting that some symbiotic bacteria may delay this bleaching. The bleaching process of M. aeruginosa was distinguished from the phenomena of previously proposed chlorosis and programmed cell death in various characteristics. Bleached cultures of NIES-298 quickly bleached actively growing M. aeruginosa cultures, suggesting that M. aeruginosa itself produces bleach-causing compounds. Pseudomonas sp. MAE1-K delaying the bleaching of NIES-298 cultures was isolated from the KW culture. Bleached cultures of NIES-298 treated with strain MAE1-K lost their bleaching ability, suggesting that strain MAE1-K rescues M. aeruginosa from bleaching via inactivation of bleaching compounds. From Tn5 transposon mutant screening, a metZ mutant of strain MAE1-K (F-D3) unable to synthesize methionine, promoting the bleaching of NIES-298 cultures but capable of inactivating bleaching compounds, was obtained. The bleaching process of NIES-298 cultures was promoted with the coculture of mutant F-D3 and delayed by methionine supplementation, suggesting that the bleaching process of M. aeruginosa is promoted by methionine deficiency. IMPORTANCE Cyanobacterial blooms in freshwaters represent serious global concerns for the ecosystem and human health. In this study, we found that one of the major species in cyanobacterial blooms, Microcystis aeruginosa, was quickly collapsed after exponential growth by producing self-bleaching compounds and that a symbiotic bacterium, Pseudomonas sp. MAE1-K delayed the bleaching process via the inactivation of bleaching compounds. In addition, we found that a metZ mutant of strain MAE1-K (F-D3) causing methionine deficiency promoted the bleaching process of M. aeruginosa, suggesting that methionine deficiency may induce the production of bleaching compounds. These results will provide insights into the symbiotic relationships between M. aeruginosa and heterotrophic bacteria that will contribute to developing novel strategies to control cyanobacterial blooms.


Assuntos
Microcystis , Ecossistema , Água Doce , Humanos , Metionina/metabolismo , Microcystis/metabolismo , Pseudomonas/genética
19.
Sci Total Environ ; 844: 156915, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772529

RESUMO

This study investigated the reaction kinetics and elimination efficiency of eleven synthetic musks during ozonation and UV254nm-based, advanced oxidation processes. The synthetic musks containing olefin moieties with electron-donating alkyl substituents such as octahydro tetramethyl naphthalenyl ethanone (OTNE) and ambrettolide (AMBT) showed high reactivity toward ozone (k ≥ 3.7 × 105 M-1 s-1) and free available chlorine (FAC) (k = 9.2 - 88 M-1 s-1), while all other synthetic musks were less ozone reactive (k = 0.3 - 560 M-1 s-1) and FAC-refractory. All synthetic musks showed high •OH reactivity (k > 5 × 109 M-1 s-1), except musk ketone (MK) (k = 2.3 × 109 M-1 s-1). In concordance with the kinetic information, OTNE and AMBT were efficiently eliminated (>97%) in simulated ozone treatments of drinking water at a specific ozone dose of 0.5 gO3/gDOC. The elimination levels of the other synthetic musks were below 50% at 0.5 gO3/gDOC. The fluence-based UV photolysis rate constant of the synthetic musks was determined to be (0.2 - 2.7) × 10-3 cm2/mJ. The elimination levels of synthetic musks during UV alone treatment ranged from 7 to 81% at a UV fluence of 500 mJ/cm2. The addition of 10 mg/L H2O2 (UV/H2O2) significantly enhanced the elimination of most synthetic musks (achieving >90% elimination at 500 mJ/cm2), indicating that the •OH reaction was mainly responsible for their elimination. The addition of 10 mg/L FAC (UV/FAC) also significantly enhanced the elimination of olefinic and aromatic synthetic musks (>90%), for which the reaction with ClO• was mainly responsible. For MK and two alkyl synthetic musks, their elimination during UV/FAC treatment was still limited (28 - 64%) and was mainly achieved by UV photolysis or reaction with •OH. In summary, this study substantiates the chemical kinetics approach as a helpful tool for predicting or interpreting the elimination of micropollutants during oxidative water treatment.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Cloro , Peróxido de Hidrogênio , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
20.
Water Res ; 220: 118515, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700645

RESUMO

Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In this study, a kinetic model for the reaction of chlorine with ClO2- was developed to predict the fate of ClO2- during chlorine disinfection. The reaction of ClO2- with chlorine was found to be highly pH-dependent with formation of ClO3- and ClO2 in ultrapure water. In presence of dissolved organic matter (DOM), 60-70% of the ClO2- was transformed to ClO3- during chlorination, while the in situ regenerated ClO2 was quickly consumed by reaction with DOM. The remaining 30-40% of the ClO2- first reacted to ClO2 which then formed chlorine from the DOM-ClO2 reaction. Since only part of the ClO2- was transformed to ClO3-, the sum of the molar concentrations of oxychlorine species (ClO2- + ClO3-) decreased during chlorination. By kinetic modelling, the ClO2- concentration after 24 h of chlorination was accurately predicted in synthetic waters but was largely overestimated in natural waters, possibly due to a ClO2- decay enhanced by high concentrations of chloride and in situ formed bromine from bromide. Understanding the chlorine-ClO2- reaction mechanism and the corresponding kinetics allows to potentially apply higher ClO2 doses during the pre-oxidation step, thus improving disinfection byproduct mitigation while keeping ClO2-, and if required, ClO3- below the regulatory limits. In addition, ClO2 was demonstrated to efficiently degrade haloacetonitrile precursors, either when used as pre-oxidant or when regenerated in situ during chlorination.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Cloretos , Cloro , Desinfecção , Halogenação , Cinética , Oxidantes , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...